
A Dynamic Pipeline for Spatio-Temporal Fire Risk Prediction
Bhavkaran Singh Walia
Carnegie Mellon University

Pittsburgh, PA
bbhavkar@alumni.cmu.edu

Qianyi Hu
Carnegie Mellon University

Pittsburgh, PA
qianyih@andrew.cmu.edu

Jeffrey Chen
Carnegie Mellon University

Pittsburgh, PA
jc6@andrew.cmu.edu

Fangyan Chen
Carnegie Mellon University

Pittsburgh, PA
fangyanc@andrew.cmu.edu

Jessica Lee
Carnegie Mellon University

Pittsburgh, PA
jl5@andrew.cmu.edu

Nathan Kuo
Carnegie Mellon University

Pittsburgh, PA
nekuo@andrew.cmu.edu

Palak Narang
Carnegie Mellon University

Pittsburgh, PA
pnarang@andrew.cmu.edu

Lt. Jason Batts
Pittsburgh Bureau of Fire

Pittsburgh, PA
jason.batts@pittsburghpa.gov

Geoffrey Arnold
Dept. of Innovation and Performance

Pittsburgh, PA
geoffrey.arnold@pittsburghpa.gov

Michael Madaio
Carnegie Mellon University

Pittsburgh, PA
mmadaio@cs.cmu.edu

ABSTRACT
Recent high-profile fire incidents in cities around the world have
highlighted gaps in fire risk reduction efforts, as cities grapple with
fewer resources and more properties to safeguard. To address this
resource gap, prior work has developed machine learning frame-
works to predict fire risk and prioritize fire inspections. However,
existing approaches were limited by not including time-varying
data, never deploying in real-time, and only predicting risk for a
small subset of commercial properties in their city. Here, we have
developed a predictive risk framework for all 20,636 commercial
properties in Pittsburgh, based on time-varying data from a variety
of municipal agencies. We have deployed our fire risk model on
Pittsburgh Bureau of Fire’s (PBF), and we have developed prelimi-
nary risk models for residential property fire risk prediction. Our
commercial risk model outperforms the prior state of the art with
a kappa of 0.33 compared to their 0.17, and is able to be applied to
nearly 4 times as many properties as the prior model. In the 5 weeks
since our model was first deployed, 58% of our predicted high-risk
properties had a fire incident of any kind, while 23% of the build-
ing fire incidents that occurred took place in our predicted high or
medium risk properties. The risk scores from our commercial model
are visualized on an interactive dashboard and map to assist the
PBF with planning their fire risk reduction initiatives. This work is
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already helping to improve fire risk reduction in Pittsburgh and is
beginning to be adopted by other cities.
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1 INTRODUCTION
Fire departments, like many municipal agencies, face the challenge
of improving public safety, despite often armed with limited re-
sources. With 475,500 structure fires in the United States in 2016
alone, causing 3,390 civilian deaths and 10.6$ billion of property
damage, fire departments, as the "Authority Having Jurisdiction"
[16] perform community risk reduction efforts to improve public
safety. These include regular fire safety inspections of commercial
properties as well as fire safety education initiatives to reduce the
risk of residential property fires (which they cannot inspect) [16].

However, such risk reduction initiatives often rely on a legacy
system of inspections conducted on the basis of pre-existing permits,
or, at best, a rule-based heuristic for determining which properties
warrant inspection [15], and are not influenced by a data-driven
fire risk assessment of individual properties or communities. As
a result, some properties can slip through the cracks, resulting
in such high-profile fire incidents as the Grenfell Towers fire in
London in summer of 2017, or the Bronx apartment fire in New
York City in December, 2017. These properties were later found
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Figure 1: Heatmap of commercial property risk scores in
Pittsburgh, with darker colors representing higher risk

to contain several fire safety violations that, if caught, could have
helped reduce the fire risk to those properties [2].

To address this, several municipal fire departments, most notably
New York and Atlanta, have developed risk-based inspection proce-
dures based on historical fire incidents [6, 13]. However, these prior
approaches have either been proprietary, in the case of NYC, and
thus the research community is unable to build off of their work
or use it as a benchmark, or in the case of Firebird in Atlanta, have
relied on static data to create a single set of risk scores for a subset
of their commercial properties, without the ability to take in new
data and retrain the model as the city changes and evolves over
time.

We contribute to the state of the art in fire risk prediction in the
following ways:

Commercial Fire Risk Model: We have developed a fire risk
prediction model that draws on dynamically updated (i.e. temporal)
data about (1) property features, (2) non-fire property inspections
and violations (i.e. sanitation, noise, etc, which have been identified
in prior work to be significant in informing fire risk levels), and (3)
historical emergency calls routed to the fire department (excluding
actual building fires). This model generates a risk score (i.e. likeli-
hood of fire) for all of the 20,636 non-residential (i.e. commercial,
governmental, industrial, etc) properties in the city of Pittsburgh,
with an AUC of 0.74%, and a kappa of 0.33, significantly outper-
forming the 0.17 kappa of the 2016 Firebird model (the current state
of the art) [13].

Deployed Risk Model Pipeline: Our commercial risk model
has been deployed for the last five weeks on the Bureau of Fire’s
server, scraping new data, re-training the model, and generating
risk scores on a weekly basis. These risk scores are visualized on
an interactive map and data dashboard we developed in partner-
ship with the city of Pittsburgh’s Department of Innovation and
Performance, to augment Bureau of Fire’s planning for commercial
property inspection. We have conducted a post-hoc evaluation of
our model performance since its deployment, finding that 58% of
the predicted high-risk properties had at least one fire incident in
the five weeks since our model was deployed.

The Bureau of Fire inspectors and operations chiefs are cur-
rently using the fire risk scores to inform their prioritization of
commercial properties to inspect, both at the tactical-level of the

fire inspectors making daily inspection planning decisions, and for
the operations chiefs making strategic-level decisions about their
inspection planning and personnel resource allocation.

Residential risk model: We also introduce a novel risk model
to generate fire risk scores for residential census blocks in Pitts-
burgh, achieving 0.74% AUC and 0.45% kappa. Instead of predicting
risk for individual properties, as in the commercial model, our
model predicts risk for census blocks. By predicting at a broader
level, the model can help municipal fire departments target high-
risk residential areas for their fire safety education or other risk
reduction efforts.

National impact: The commercial risk model deployed at the
Pittsburgh Bureau of Fire has been recognized by the GovTech and
MetroLab Network as part of their "Innovation of the Month" series
for other cities in the MetroLab Network to learn from. The code
used in the model and pipeline has been made public to benefit
other municipal agencies1, along with an extensive technical report
provided to explain the process2. In the weeks since the GovTech
publication, the chief data officers for the cities of Baltimore and
Syracuse have been in consultation with the project lead for this
work to deploy the commercial risk model in their cities.

2 RELATEDWORK
Municipal governments around the world are facing the challenge
of how to do more with fewer resources and tighter budgets. To
address this resource gap, many cities are turning to predictive
analytics to prioritize resource allocation and improve outcomes
across a variety of domains. Thanks to an increase in the amount of
data available about many aspects of civic life, better inter-agency
data sharing practices, and an increase in the data analytic capacity
of municipal governments, predictive risk modeling is contributing
to improved municipal decision-making and civic outcomes. We
describe here recent work using predictive risk models for munic-
ipal resource prioritization, as well as the prior work in fire risk
prediction.

2.1 Civic Risk Modeling
In New Orleans, [9] used neighborhood and administrative data to
assess the extent of distressed properties and their impact on the
neighborhood. Other recent work incorporated regularly updated
temporal data as well as spatial data to predict water contamination
at a household-level [3]. Both of those projects, however, were not
designed to address a resource prioritization challenge in quite the
same way as our fire risk prediction work. More closely related,
then, is work such as Potash et. al, who used blood tests, home
inspections, and other data to predict lead poisoning at a child-level
[17] to inform the Chicago Department of Public Health’s home
inspection prioritization. Along similar conceptual lines, Salomon
et al. developed a model to predict incarceration using data from be-
havioral health services and the criminal justice system to prioritize
mental health interventions [19]. However, neither of those models
had (at the time of writing) been deployed in the civic agency with
which they were working. For risk prediction models that have
been deployed, Lavi et al. used weather, temporal, and spatial data

1https://github.com/CityofPittsburgh/fire_risk_analysis
2https://www.cmu.edu/metro21/projects/fire-risk-analysis.html



to predict which medical dispatches are most likely to require med-
ical transport [12], while Cuccaro-Alamin et al. describe predictive
risk modeling used to inform child welfare interventions, deployed
in Allegheny County, PA [7]. We discuss implications of deployed
risk models in Section 6.

2.2 Fire Risk Predictive Analytics
In a systematic review of fire risk assessment, Moshashaei et al.
found that the vast majority of work on data-driven fire risk pre-
diction has targeted woodland and forest fires, which use weather
and topography data, rather than the infrastructure and behavioral
data that is at the crux of urban fires (see [18] for the state of the art
in using a context-based online learning approach to forest fire risk
prediction) [15]. As [15] point out, significantly less work has been
done on urban fire risk assessment, and in fact, in their systematic
review, 16 of the 17 prior papers on urban fire risk used handcrafted
rules for risk based on the consequences of fire (i.e. loss of life)
rather than statistical models of likelihood of fire.

Prior work in data-driven urban fire risk analysis, such as [5, 8],
has often operated at a less granular level than may be useful, and
has not been used to inform prioritization in fire safety inspections.
For instance, [5] drew ellipses around the areas of densest concen-
tration of fire incidents to determine the risk level of residential
communities, while DaCosta et al. took a more statistical approach
to optimizing smoke-alarm inspections, joining data from the Amer-
ican Community Survey and American Housing Survey to predict
census blocks most likely to have homes without functioning smoke
alarms, using a Random Forest algorithm [8].

The most relevant precedents for our fire risk prediction work
here are (1) the "Risk-Based Inspection System" developed by the
New York Mayor’s Office of Data Analytics with the Fire Depart-
ment of New York (FDNY) [6] and (2) the "Firebird" fire risk pre-
diction framework developed by the Data Science for Social Good
program in partnership with the Atlanta Fire Rescue Department
(AFRD) [13, 14].

In New York City, in response to high-profile fire incidents such
as the Deutsche Bank fire, the Mayor’s Office of Data Analytics
developed a "risk-based inspection system" using data from struc-
tural features and behavioural indicators to predict the fire risk
of a building and prioritize the property inspections accordingly
[6]. However, because the model was proprietary, and no details
about its model construction, accuracy, or other model performance
metrics were made public, it is difficult for other municipalities to
benefit from this work or other researchers to build off of it and
compare their work against a performance benchmark from FDNY.

In 2015, the Atlanta Fire Rescue Department (AFRD) partnered
with Georgia Tech's Data Science for Social Good (DSSG) program
to develop "Firebird", an open-source framework for identifying and
prioritizing commercial property inspections [13, 14]. The DSSG
team developed a predictive risk model based on 1) historical fire
incident data from 5 years of fires, and 2) commercial property
data collected from their Office of Buildings and a commercial real
estate property data set purchased from the CoStar property group.
This model was designed for AFRD"s Community Risk Reduction
Section to help prioritize their commercial property inspections,
based on the risk score assigned by the predictive model.

Data Source Features Records Date Range

Fire Incidents Bureau of Fire 27 387,264 2009-2017
Violations PLI 20 13,892 2015-2016
Parcels OPA 46 579,474 2017

Property Data OPA 80 578,149 2017
Tax Liens DCR 11 552,193 2009-2017

ACS Census Bureau 42 1,100 2016

Table 1: Data Sources

However, their model was developed in summer 2015, and was
not designed to operate on dynamic, temporal data, such as data
included in other AFRD incident codes (i.e. incidents not included in
code 100 (building fires), such as electrical shortages, gas leaks, etc),
non-fire inspection violations (e.g. noise or sanitation violations),
or 311 requests, etc. Due to the highly dynamic nature of much
civic data, even purportedly "static" data such as property size,
assessed value, property condition, or even property usage data
may change over time as properties are bought, sold, renovated,
and closed. Thus, without incorporating temporal data, the Firebird
model was unable to be updated on a regular basis, and as such
provided merely a snapshot in time of the risk levels of summer
2015, which became out of date soon after they were generated.

To address these gaps, our model incorporates dynamically up-
dated, temporal data from the non-building-fire incidents (e.g. gas
leak, electrical shortage), non-fire code violations (e.g. noise and
sanitation, etc), and property assessment data (i.e. building and land
value updated every month), to predict the fire risk for commercial
properties in the city of Pittsburgh. While the Firebird model relied
heavily on purchasing expensive commercial real estate data, our
model uses open data from city agencies, and is thus able to be
applied to every commercial property in the city, instead of the
small subset the Firebird model was applied to. Our commercial risk
model has been deployed on the Pittsburgh Bureau of Fire’s server
since January 5th, 2018, scraping new data from various sources
on a weekly basis and retraining the model every week, generating
updated risk scores. Finally, we go beyond previous approaches by
developing a preliminary risk model for residential properties at
the census block level, to inform Community Risk Reduction efforts
such as neighborhood fire safety education.

3 METHODS
3.1 Data Processing

3.1.1 Data description. We start by acquiring data sets from
a variety of sources that contain data we hypothesize (based on
prior work) to be relevant in predicting fire risk in non-residential
properties. We start with historical fire incident data, provided by
the Pittsburgh Bureau of Fire, from 2009-2017, updated on a weekly
basis, from which we include all fire incident codes that have an
associated address. From the Allegheny County Office of Property
Assessments (OPA), we use property assessment data, updated on a
monthly basis, as well as a parcel dataset, which contains informa-
tion about every parcel in the City of Pittsburgh. Finally, from the
Pittsburgh Department of Permits, Licenses, and Inspections (PLI),
we use their record of non-fire inspections and violations (e.g. noise



or sanitation violations). To build the residential risk model, we
use two additional datasets. From Allegheny County Department
of Court Records (DCR), we use the tax lien data, updated on a
monthly basis. We also used the 2012-2016 5-year estimate Amer-
ican Community Survey (ACS) data from the US Census Bureau.
We chose the datasets that are likely correlated with fires based on
prior work [10], specifically data about income, occupancy, year
built, and the year resident moved in. This data is provided at the
census block level, which corresponds to the census block level at
which we are making our predictions. More detail about the data
sets can be found in Table 1, with the number of records, features,
and dates up-to-date as of the time of this writing.

3.1.2 Data pre-processing. For the commercial property risk
model, we joined the above data sets for each non-residential ad-
dress in our dataset. Although the most granular unit of analysis
would be the parcel (instead of address), the fire incidents were
logged at the address level, and thus, to predict fire risk, all of
the other data first needed to be aggregated across the individual
parcels in each address. To do this, we start with the Allegheny
County property assessment data set, which we obtained from the
Western Pennsylvania Regional Data Center (WPRDC)3. We merge
the PLI inspection violations dataset with the non-residential prop-
erties (by which we mean Commercial, Industrial, Governmental,
or Utility), at the parcel level. After minor cleaning such as strip-
ping white spaces from text values, dropping duplicate columns,
and dropping rows with significant (85%) missing values for data,
we aggregate the parcel data at the address level by taking the
mean of numeric features and using the most frequent category for
categorical features.

For the residential property risk model, we followed the same
procedure as above, except that we further aggregated the data to
the census block group level by taking the sum for numeric features,
which included tax lien, and PLI data, and the most common for
categorical features, which included some property data. We took
the sum as opposed to the mean to capture the total number of
violations and inspections in each block, as well as the total amount
of unpaid taxes.

For both models, we then merged the resulting aggregated data
frame with the fire incidents dataframe (for both the commercial
and residential model). We performed minor cleaning of the fire
incident data (e.g. stripping white space, standardizing hyphens,
standardizing street abbreviations, etc).

3.2 Model construction
3.2.1 Commercial Risk Model. For the commercial risk model,

after joining all of our data sets together at the address level, we
were left with a single data set used to train, evaluate, and test the
risk model. For this analysis, we used all fire incidents of a 100-
level code (i.e. all building fire incidents) as the outcome to predict,
and all other features were used as input in the model. Because
some of the features were events (e.g. fire incidents and non-fire
inspection violations), we restructured the data so that only events
that occurred prior to the fire in question were used as a predictive
feature. This is similar to the walk-forward time-partition approach

3www.wprdc.org

in [13], however, as they point out in their discussion, there was
a time-window mismatch between their training set (4 years) and
their test set (1 year). They describe that they attempted to unfold
their properties into property-years, as we do, but because they did
not incorporate time-dependent data, as we do, this approach did
not prove useful for them.

In other words, each row of our dataframe is an address-year,
which had a 0 or 1 to indicate whether it contained at least one
building fire incident in any given year in the 8 years of our data. For
each address-year, we included the time-varying features (i.e. PLI
violations and non-100 fire incidents [e.g. smoke alarm activation,
electrical wiring issues, etc]) as features in that address-year row
only if the datetime of that event occurred in the window prior to
the code-100 fire incident to be predicted. We then one-hot encoded
all of the categorical features as dummy variables, and divided our
data into a training set (6 years of data), a validation set for feature
selection (1 year of data), and a test set (the final 1 years of data).

3.2.2 Residential Risk Model. For the residential risk model, af-
ter data pre-processing, all of the data was aggregated at the census
block group level. Since block groups are much larger than indi-
vidual addresses, fires were much more frequent, with most blocks
having multiple fires over the span of the entire time period of the
data. We unfolded each census block into a block-year instance,
much like in the commercial model. Each row represented a single
census block during a single year, with features that included PLI
violations, non-100 incidents, and tax lien data from that year. The
target to predict was whether there was a code-100 fire within that
block in that time period. After dividing up the time-dependent
data, we merged it with the time-invariant data that corresponded
with the census blocks, like property data and ACS data. Similar to
the commercial model, we then one-hot encoded the features and
used time-series cross-validation, and we similarly split the data
into a 6-fold cross-validation on a training set of 6 years, a 1-year
validation set, and a 1-year test set.

3.3 Model tuning
We used a 6-month validation set for feature selection for the com-
mercial model. We computed the feature importance of each fea-
ture on our initial commercial model. Using feature importance
as a threshold, we repeatedly pruned the model of features. After
deciding the best subset by the F1 metric, the dimensions of the
commercial model were reduced from 830 features to 227 features,
which allowed for faster run-time and removed irrelevant data. We
also ran a 5-fold cross-validated grid search to identify the optimal
hyperparameters for our best performing models. For the XGBoost
commercial risk model, we searched max_depth, min_child_weight,
subsample, colsample_by_tree and tuned the rest manually. For the
Random Forest residential risk model, we searched n_estimators,
max_depth, and max_features using a 1-year validation set.

4 RESULTS
Using data joined from fire incidents, non-fire inspection viola-
tions, and property assessments, we evaluate multiple model types
on their ability to predict the likelihood of a fire occurring in a
given spatial window (address for commercial, and census block for
residential) for the 1-year window of our test set. We first report



Model Performance

Model Kappa AUC Recall Precision

Logistic Regression 0.004 0.53 0.16 0.006
Ada Boost 0.12 0.63 0.27 0.085

Random Forest 0.09 0.70 0.43 0.056
XG Boost 0.33 0.75 0.50 0.26

KDD16 Firebird 0.17 0.8 0.72 0.18

Table 2: Evaluation of Multiple Commercial Risk Models

Model Performance

Model Type Kappa AUC Recall Precision

Ada Boost 0.40 0.72 0.46 0.98
Random Forest 0.45 0.74 0.58 0.89

XG Boost 0.43 0.73 0.49 0.97

Table 3: Evaluation of Multiple Residential Risk Models

evaluations of multiple model types, comparing our results to the
current state of the art for commercial risk prediction [13]. We
then describe some of the predictive features that were ranked as
highly important in the models’ ability to predict fires, for both
commercial and residential models.

4.1 Commercial model evaluation
Because for the use case of fire prediction we want to prioritize
correctly classifying more of the positive class (i.e. fire) over mini-
mizing false positives (which may result in more inspections, but
would be less likely to lead to missed incidents), we decided to use
kappa and recall as our two main evaluation measures. For our
commercial risk model, we selected the XG Boost model for its
better performance across all measures, as seen in Table 2.

Although the Firebirdmodel has a larger recall and AUC4, it is im-
portant to note that the Firebirdmodel was only applicable to a small
subset of properties in the city of Atlanta. Because their dataset was
highly incomplete, in order to increase model performance, they
created a model for only 5,022 non-residential properties (out of the
more than 20,000 properties in the city). This prevents their model
from creating a fire risk score for every non-residential property in
the city, as reported in [13].

By using open data provided by the city government, our ap-
proach, in contrast, can be applied to all 20,000 non-residential
properties in the city. Our recall of 50% is significant considering
the extreme class imbalance in our commercial property data. For
example, for any given 1-year period, our model accurately predicts
nearly half of the fires, 70 times more effective than random guess,
which would be correct 0.71% of the time, given the distribution of
fire incidents.

4While only the AUC was reported in the Firebird KDD16 paper, the other metrics
were provided through correspondence with an author of that paper

4.2 Residential risk model evaluation
For the residential risk model, we used the same metrics of eval-
uation, namely kappa, AUC, recall, and precision. Instead of gen-
erating risk scores for individual properties, we generated a risk
score for each of the approximately 350 census blocks in Pittsburgh,
as that is the level at which the Fire Department may conduct
Community Risk Reduction fire safety education efforts, instead
of inspecting the individual commercial properties. We found Ran-
dom Forest to be the best performing model (n_estimators=500,
max_depth=10, max_features=’log2’), with a mean AUC of 0.82 on
the validation set (Figure 3) and an AUC of 0.74 on the 2017 test set.

Figure 2: ROC Curve for XGBoost on Residential Property
Census Blocks

Figure 3: ROC Curve for Random Forest on Residential
Property Census Blocks



Commercial Residential

1 lot area EMS call
2 fair market building tax lien amount
3 fair market land Allegheny County tax lien
4 sale price medical assist
5 activated smoke detector, no fire dispatched and cancelled
6 unintent. activation of smoke detector city & school tax lien
7 tax exempt owner occupied
8 unintent. activation of alarm good intent call
9 apart 5-19 units fair market land
10 individual owner smoke detector activation

Table 4: Features ranked by feature importance

Risk Level Commercial Addresses Residential Census Blocks

High (7-10) 103 23
Medium (4-6) 550 207
Low (1-3) 19983 113

Table 5: Addresses and census blocks at each risk level

The results are better than the commercial model results, most
likely because of the better class balance (53% of the total census-
block-years contained fires). Interestingly, for all of the trained
models, precision was significantly higher than recall. Future work
will continue to investigate why this is the case, to help improve the
recall. While some prior work has been conducted for residential
property risk prediction, for instance with Jon Jay’s work predict-
ing residential building fires in Baton Rouge, LA [11], Jay’s model
predicted fires at the building-level, instead of the census-block
level, which we believe through discussion with the Bureau of Fire
to be the most useful level for the fire department to intervene
through community risk reduction. Thus, the two approaches may
not be directly comparable.

4.3 Feature importance ranking
The most important predictive features in the commercial model
were lot area, appraised building and land value, and sale price.
Other significant predictors include smoke detector activation,
densely populated apartment complexes, tax exempt properties
(e.g. low-income housing, religious institutions, etc.), and whether
or not a building is owned by an individual owner, compared to a
corporation. The most important features for residential property
census blocks were EMS call, unpaid tax liens on properties in that
census block, owner-occupied (which may be an indication that the
property is better kept up), as well as fairmarket land values.

4.4 Analysis of High-Risk Properties
Our final commercial riskmodel outputs the prediction probabilities
for each address in our data, which is the probability that the address
will be a positive class (i.e. fire incident of code 100) in the final
1-year window. A larger probability means that it is more likely
that the property will have a code 100 fire incident. In order to have
risks scores that are easier to understand for the Bureau of Fire, we
convert these probabilities into a risk score integer from 1-10.

Table 5 shows the distribution of addresses and census blocks at
each of the three risk categories associated with the risk scores. The
low-risk category contains risk scores 1-3, medium-risk scores 4-6,
and high-risk 7-10. We arrived at these three risk categories through
discussion with our partners at the Bureau of Fire, to best fit their
inspection planning needs, though they can continue to be tuned.
There are significantly more commercial properties with a risk
score of 1 (18,364) than any other risk score, while the residential
census blocks have more blocks in the medium risk category. Future
work should continue to optimize the discretization of risk integers
into risk categories.

Figure 4: High-Risk Property Types

In Figure 4, we show the property types which contain the most
high-risk properties. The property types with the most high-risk
properties in the city are apartments of 40+ and independent liv-
ing for seniors, although it should be noted that there are many
more of those addresses in the city than, for instance, HUD Project
#221. The charitable exemption property type contained several
high-risk properties, while also showing up as a highly predictive
feature. Interestingly, while they were not in the top 10 features,
the property types of apartments of 40+ units, Independent living
(seniors), and Owned by Metro Housing Authority were highly pre-
dictive features for commercial property fire risk. Those, and other
high-risk property types, such as those owned by Board of Educa-
tion, Apartments, and Restaurants, align with existing initiatives
from Pittsburgh Bureau of Fire’s inspection program. This serves
as a useful measure of "face validity" for the risk scores, such that
some of the highly predictive features align with existing expert
knowledge and Bureau of Fire risk reduction efforts, in addition
to the more traditional risk model performance metrics described
above.

5 DEPLOYMENT
5.1 Integration into existing practices
As part of the Pittsburgh Bureau of Fire’s risk reduction efforts, they
conduct regular property inspections for commercial properties.
However, because of the large disparity between the number of
possible properties to inspect and the capacity of PBF’s inspectors,
prioritization based on fire risk is necessary, as pointed out by [13].
After developing the commercial fire risk model and evaluating its
performance, we provided the Pittsburgh Bureau of Fire with a tool



they could use to integrate those fire risk scores into their existing
inspection decision-making practices. Through conversations with
PBF fire chiefs and fire inspectors, we decided on an interactive
data dashboard and an interactive map, using a platform already
incorporated into PBF fire inspectors’ existing workflow, called
"Burgh’s Eye View" (BEV).

5.2 Fire Risk Visualization Tools

Figure 5: Interactive map displaying high-risk properties,
filtered by property type

5.2.1 Interactive Map. Inspectors currently use BEV to find in-
formation on the properties their risk reduction operational plan-
ning has determined are due for inspection on any given day. Thus,
we displayed the risk scores as an additional filterable "layer" here
to best fit within their existing workflow. Fire inspectors can use
this map to identify the high-risk properties nearby their assigned
inspections, providing better inspection coverage for the riskiest
properties. Additionally, operations chiefs can filter by property
usage type in addition to risk level to support their strategic plan-
ning around risk reduction initiatives to target, for instance, senior
centers or high-rise apartment complexes, and prioritize by the
highest-risk of those.

5.2.2 Data Dashboard. While the interactive map is helpful for
spatial visualizations of the risk scores, we also wanted to support
strategic planning from the fire chiefs by allowing them to view the
risk scores in the aggregate, and compare the relative risk levels
of multiple types of properties or locations. We thus created an
interactive data dashboard, using R Shiny, to allow fire chiefs (or
inspectors) at the Bureau of Fire to easily display and compare risk
levels based on property type, neighborhood, and fire district. They
can subset each of these by any of the others, allowing them to
compare the high-risk properties of a certain usage type (e.g. restau-
rants) by neighborhood, to identify the neighborhoods that contain
the most high-risk restaurants. See Figure 5.1 for an example of the
data dashboard displaying the average risk score by property usage
type (with the actual usage types greyed out here, for privacy). PBF
staff can then download the visualization as an image or download
the table of property information as a .csv file.

Figure 6: Data dashboard displaying property usage types
according to their average fire risk score

5.3 Model Pipeline
Since data on fire incident and property features are updated weekly,
our model must be re-trained periodically. Therefore, our model is
deployed on the Bureau of Fire’s servers and triggered by a "cron"
script to run every Saturday. The program deployed scrapes the
data source, retrains the model and updates risks scores on the map
and dashboard.

Because fire risk levels will change over time as new data about
fire incidents and property features are acquired, in order for our
model to continue to be useful for the Bureau of Fire, we needed
to deploy the risk model on the Bureau of Fire’s servers, to intake
new data on a regular basis, re-train the model, and generate new
fire risk scores for each address. Our model is currently deployed
as a set of Python scripts that are triggered by a "cron" script on
their server to run every Saturday. It scrapes the data sources for
the latest dataset, retrains the model, and updates those risk scores
on the map and dashboard.

5.4 Post-hoc analysis
The commercial risk model has been deployed on the Bureau of
Fire’s server since January 5th, 2018, and has retrained five times
in the subsequent five weeks as of this writing. Here, we discuss
post-hoc analysis of the first model’s performance on predicting
fires that occurred since then, as well as stability of the model’s
performance across the five iterations. As of this writing, we use the
results from the model with the test set ending on December 31st,
2017. Of the 13 fire incidents between 1/1/2018 and 2/10/2018 (when
this analysis was conducted), 3 of them occurred in high or medium
risk properties. Additionally, of those 103 high risk properties, 1.94%
of them had code 100s incident, compared to 0.72% of medium risk,
and 0.06% of low risk properties. See Table 6 for more detail on the
number of fires that actually occurred in low, medium, and high
risk properties since our first model ran.

To understand the stability of our model’s performance through
the 5 iterations, we report our model’s mean kappa, AUC and F1 in
Table 7. The low standard deviation of each metric (less than 0.01)
shows that the performance is stable.



Risk Level All Incidents All Code-100 Incidents

High Risk 58.25% 1.94%
Medium Risk 22.18% 0.72%
Low Risk 2.48% 0.06%

Table 6: Percent of properties in each risk category that had
an incident since the model first ran

Kappa AUC F1

Mean 0.287 0.715 0.293
Std Dev 0.0073 0.0081 0.0072

Table 7: Model stability over 5 weeks

6 DISCUSSION
In this report, we have described our process for modeling struc-
tural fire risk, based on data about historical fire-related incidents,
property inspections and violations, property assessments, property
characteristics (size, sale price), and parcel data, as well as tax lien
and American Community Survey data. We described how we used
these features to train two predictive models, one for commercial
properties and the other for residential property census blocks, and
discuss results from evaluations of those models. We described how
we deployed the commercial property risk model at the Pittsburgh
Bureau of Fire, where it has been updating on a weekly basis for
the past five weeks, displaying the risk scores on a data dashboard
and an interactive map.

In inspecting the property types that had a high frequency of
high-risk properties, as well as some of our important features,
we find that, similar to the Firebird model, high-rise apartment
complexes have a high number of high-risk properties, perhaps
due to the high density. However, we also find that Housing and
Urban Development (HUD) properties and properties owned by the
Metro Housing Authority are also some of the most common high-
risk properties. This suggests that the Pittsburgh Bureau of Fire
may benefit from strengthening their fire risk reduction initiatives
around such properties, particularly the commercial property fire
inspections.

We go beyond the previous state of the art in structural fire
risk prediction in the Firebird model by 1) providing a risk model
that incorporates time-varying data about inspections and non-fire
incidents at those locations, 2) allowing us to deploy the model on
the Bureau of Fire server where it is retraining every week. We also
go beyond prior work by providing 3) a post-hoc analysis of the
performance of this model in the five weeks since its deployment.
Finally, we extend the Firebird work by 4) developing a risk model
for residential property census blocks, to inform community fire
safety education efforts.

In our approach, we have utilized one method for risk modeling
- that of identifying the likelihood of an adverse event (i.e. fire
incident) occurring. However, estimating the likelihood of an event
is not the only way to model risk. One might also model the severity
of the event, were it to occur. One example of this is the work from
Xu et al. [20], where they predict the likelihood of freeway crashes

at several levels of severity. Our fire risk model is being used to
inform the prioritization of fire inspections; thus, to mitigate loss
of life and property damage in the event of a fire, PBF may want
to incorporate aspects of risk that reflect the severity of the fire, in
addition to just its likelihood of occurrence. This may be measured
by the number of "alarms" the fire had, or data on the potential
loss of life or amount of property damage in the event of a fire. It is
along these lines of multi-faceted risk analysis, that the Bureau of
Fire has targeted inspection efforts at Independent Living (senior)
properties, due to the limited mobility of the residents, and thus
the potential for severe loss of life in the event of a fire. See [1, 4, 7]
for a larger discussion about integrating predictive modeling into
municipal decision-making.

We thus present these results with a word of caution. It is not our
intent for the risk scores to entirely replace the decision-making of
the Bureau of Fire chiefs and fire inspectors. Rather, we intend for
them to augment existing decision-making practices, with a model
that predicts the likelihood of a fire incident.

6.1 Limitations
While the most granular level of prediction would have been to
predict fires at the parcel level, fire incidents in Pitsburgh were
only recorded at the address level. While we would have liked to
include the fire inspection and violations in addition to the noise
and sanitation violations from PLI, those data were quite sparse for
Pittsburgh, and were thus not useful. Further, while this model has
been deployed for 5 weeks, we have no longitudinal evaluation over
several months or years. Once the model has been in production
long enough, we’d like to analyze the hit rate stability and decay
over time. Since it has been only six weeks since model deployment,
it may not yet be useful to conduct that sort of analysis.

6.2 Future Work
As the commercial risk model is deployed on the Bureau of Fire’s
servers, we intend to continue to monitor the stability and efficacy
of the model’s performance over time. Future work should experi-
ment with an active learning or reinforcement learning paradigm,
where the model’s actual performance in predicting fire incidents
in some subsequent time window (not just measured against the
held-out test set) can be used as a "reward" (in the reinforcement
learning sense) to improve the model when it more accurately pre-
dicts fire incidents. Future work can also consider additional data
sets such as 311 data, or novel model types, particularly models
that take time into account, such as recurrent neural networks or
long-short term memory models.

A key component of our future work on residential fire risk pre-
diction will not only be to generate the risk scores, but to identify
the appropriate level of aggregation for analysis and visualization.
We have targeted the census block level for our initial experiments
with residential property risk prediction, but future work should
evaluate different levels of aggregation. As municipal fire depart-
ments conduct Community Risk Reduction efforts like fire safety
classes or demonstrations instead of property-level inspections, a
deployed residential risk model should provide a prioritized loca-
tion for the fire department to conduct its fire safety education
efforts. Or, looking beyond existing municipal subdivisions (e.g.



census block, neighborhood), future work might adopt a clustering
approach to identify key centroids of the largest clusters of high-
risk residential addresses, to pinpoint the optimal location where a
community fire safety event might have the best chance at reducing
the fire risk of that area.

7 CONCLUSION
We intend for this work to be useful for municipal Fire Departments,
or for anymunicipal agency or civic-minded organization (e.g. Code
for America) that wants to incorporate data-driven predictive risk
modeling into their fire risk reduction decision-making processes.

In the spirit of openness and transparency, and to make it more
likely that this approach can be adopted and re-used in other cities,
we have provided all of our code in an open-source repository5.
Other data scientists and municipal agencies can "fork" this reposi-
tory to make use of this model for their cities, using their own data.
We are currently in discussion with the chief data officers of the
cities of Syracuse and Baltimore to help them adapt this approach
for their purposes, given their data.

While we would have liked to share our data as well as the code,
not all of the data used in our model is publicly available. The
Western Pennsylvania Regional Data Center (WPRDC) has worked
closely with Allegheny County and the City of Pittsburgh to make
many civic data sets available to the public (e.g. parcel data, property
assessments, etc). Some data sets, however, such as the fire incident
data, have been modified to remove individual addresses from the
data and aggregate the incidents at the block level. In addition, we
are in the process of working with the Pittsburgh Bureau of Fire
to determine the most appropriate level of granularity at which
to make the risk scores available to the public. While we believe
that transparency of government processes is important, we also
want to protect property owners from unintended adverse effects
that might arise if fire risk scores were made public for individual
properties. This is an issue that warrants further discussion about
the ethical and legal considerations of predictive risk modeling on
open civic data, a discussion we are eager to engage in. We invite
a larger public discussion about the ways to mitigate the risks
and tradeoffs of integrating inherently uncertain predictive models
into civic decision-making while not jeopardizing the privacy and
data security of stakeholders that may be at risk through public
disclosure of data.

By integrating a data-driven approach to fire risk modeling into
existing legacy approaches to community risk reduction, we in-
tend to contribute to the safety and security of municipal residents,
particularly those who may have been overlooked by existing in-
spection practices. We hope that this work will prove useful to
other municipalities, civic agencies, and civil society organizations
interested in using data to improve public safety and the provision
of social services such as fire risk reduction. Ultimately, we intend
to contribute to the larger body of work on incorporating data
science and machine learning into improving civic processes in a
democratic, transparent way.

5https://github.com/CityofPittsburgh/fire_risk_analysis
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